If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(I)=-3I^2+20I+40
We move all terms to the left:
(I)-(-3I^2+20I+40)=0
We get rid of parentheses
3I^2-20I+I-40=0
We add all the numbers together, and all the variables
3I^2-19I-40=0
a = 3; b = -19; c = -40;
Δ = b2-4ac
Δ = -192-4·3·(-40)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$I_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$I_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$I_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-29}{2*3}=\frac{-10}{6} =-1+2/3 $$I_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+29}{2*3}=\frac{48}{6} =8 $
| -2.7x+4=2.8-12x | | 5x+9-2x-10=3 | | n=0.53 | | 8(x-30+7=2x(4-17) | | 10=r/3+7 | | 4(j+11)=52 | | p=78p | | 14n–15=10n+9= | | 17=3-a | | −37=−5(6x+3)+19x | | (0.12x+61)=(0.13x+47) | | 7+4y=1 | | -45+h=-18 | | 20j+12=52 | | 0.12x+56=0.13x+56 | | 7=4/w+5 | | 10x+14=10x+4 | | 2(2x–12)=(2x–18) | | -36+h=43 | | 3n÷4=19 | | 6.6x-8.2=11.6 | | x-3=‐12 | | x-3=-+2 | | 4^5•4^n=4^15 | | 6x^2+4x-140=180 | | (+x^2+1997x+1995x+3984015)(+x^2+2001x+1999x+3999999)=-16 | | m/(-7)=-8 | | -19+h=23 | | B(10)=2x+10 | | 4.4r–2.8=1.6 | | 5k^2+k-42=0 | | 2,675g=148 |